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Abstract

We propose an algorithm for an asymptotic model of shallow-water wave dynamics in a periodic domain. The algo-
rithm is based on the Hamiltonian structure of the equation and corresponds to a completely integrable particle lattice.
In particular, ‘‘periodic particles” are introduced in the algorithm for waves travelling through the domain. Each periodic
particle in this method travels along a characteristic curve of the shallow-water wave model, determined by solving a sys-
tem of nonlinear integro-differential equations. We introduce a fast summation algorithm to reduce the computational cost
from OðN 2Þ to OðNÞ, where N is the number of particles. With the aim of providing a test of the algorithms, we scale the
shallow-water wave equation to make it asymptotically equivalent to the KdV equation in the form studied by Zabusky
and Kruskal in their seminal 1965 paper, thereby also testing the equivalence of the two models derived under similar
asymptotic approximations of shallow-water wave dynamics. By using the fast summation algorithm and the asymptotic
scaling analysis, we further test this equivalence by investigating the interaction of solitons and recurrence of initial states
for the shallow-water wave equation in periodic domains. Finally, to illustrate the hyperbolic nature of the dynamics of the
shallow-water wave model, we introduce a particle algorithm and its integral counterpart for the initial-boundary value
problem with homogeneous boundary conditions on finite intervals.
� 2008 Elsevier Inc. All rights reserved.
1. Introduction

The nonlinear partial differential equation (PDE) of evolution
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* Co
E-m
ut þ 2jux � uxxt þ 3uux ¼ 2uxuxx þ uuxxx ð1:1Þ

results from an asymptotic expansion of the Euler equations governing the motion of an inviscid fluid whose
free surface can exhibit gravity driven wave motion [5,13]. The small parameters used to carry out the expan-
sion are the aspect ratio, whereby the depth of the fluid is assumed to be much smaller than the typical wave-
length of the motion, and the amplitude ratio, or ratio between a typical amplitude of wave motion and the
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average depth of the fluid. Thus, the equation is a member of the class of weakly nonlinear (due to the small-
ness assumption on the amplitude parameter) and weakly dispersive (due to the long wave assumption param-
eter) models for water wave propagation. However, at variance with its celebrated close relatives in this class,
such as the Korteweg–de Vries (KdV) and Benjamin–Bona–Mahony (BBM) equations, these small parameters
are assumed to be linked only by a relative ordering, rather than a power law relation. This allows to retain
terms on the right-hand-side that would be of higher order with respect to both the KdV and BBM expan-
sions, and, in principle, consider dynamical regimes in which nonlinearity is somewhat dominant with respect
to wave dispersion.

The above nonlinear equation possesses the remarkable property of complete integrability, as evidenced by
its Lax-pair representation. Moreover, this property is complemented by the existence of a class of weak solu-
tions that can serve as a natural projection of the general solution of (1.1) to an approximating (but still com-
pletely integrable) finite dimensional dynamical system [4,6,7]. This system of ordinary differential equations
(ODEs) can be viewed as describing particle interacting through a long range potential (here position and
momentum dependent), which expresses the fact that such particles are advected by the velocity u of the shal-
low-water wave equation (1.1). The velocity is in turn determined by the particle positions and momenta. Pre-
viously such a particle system has been used to develop particle algorithms for solving the evolution equation
(1.1) on the real line, and the ‘‘quarter-plane problem” with zero boundary condition at the origin [7]. Recently
this particle algorithm has been extended to periodical domains, where ‘‘periodic particles” are introduced by
summing all periods of the kernel in the system of integrable equations [8]. The present investigation focuses
on developing the fast summation algorithm for this periodic case, and on using the particle method to study
interaction of solitons and recurrences of initial states of the shallow-water equation in periodic domains. The
fast summation algorithm introduced in this paper reduces the computational cost from OðN 2Þ to OðNÞ, where
N is the number of particles. This algorithm is in particular suitable for studying cases, such as the recurrence
behavior, that require extensive computations and large numbers of particles.

In the following sections, we briefly review the particle algorithm and its finite dimensional integrable sys-
tem, followed by the introduction of the periodical particle method and a detailed discussion of the fast sum-
mation algorithm. We then proceed with several examples that illustrate the performance of the algorithm as
well as present previously unexplored ranges of parameters and boundary conditions.

With an eye at comparing the asymptotic validity of the shallow-water wave equation (1.1) with respect to
its classical counterparts such as the KdV equation, in Section 6 we scale (1.1) so that at leading order it is
equivalent to the KdV equation discussed in [14]. Using the particle method and its fast summation algorithm,
we observe interaction of ‘‘solitons” and the recurrence of initial states for the nonlinear shallow-water wave
equation in a periodic domain. Such behaviors are similar to those reported in the paper of Zabusky and
Kruskal [14].

In addition to periodic domains, and similar to the quarter-plane problem discussed in [7], the homoge-
neous two-point boundary value problem for the nonlinear Eq. (1.1) can be represented by a particle system
in terms of integral equations, so long as the Green’s function of the operator 1� @2

x is uniquely determined
according to the boundary conditions. Thus, we demonstrate how the particle method for the integration of
the PDE (1.1) can be built so that each particle carries along the information from the boundary value prob-
lem. The fast summation algorithm for this particle method is also discussed, and numerical computations are
carried out to show explicitly the effect of the particle ‘‘pile up” near the downstream interval boundary sig-
naling the formation of a discontinuity for the PDE solution.
2. The integrable formulation and particle method

In this section, we review briefly the particle algorithm developed in [4,6,7]. By introducing the character-
istics x ¼ qðn; tÞ,
dq
dt
¼ uðqðn; tÞ; tÞ; qðn; 0Þ ¼ n; ð2:1Þ
a solution of Eq. (1.1) in the infinite domain follows formally from the Hamiltonian system
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qtðn; tÞ ¼
1

2

Z 1

�1
e�jqðn;tÞ�qðg;tÞjpðg; tÞdg� j;

ptðn; tÞ ¼
1

2

Z 1

�1
sgnðn� gÞe�jqðn;tÞ�qðg;tÞj pðn; tÞpðg; tÞdg:

ð2:2Þ
Here the characteristics qðn; tÞ play the role of positions conjugate to the momentum-like variables pðn; tÞ [4] in
the Hamiltonian
H ¼ 1

4

Z 1

�1

Z 1

�1
ðe�jqðn;tÞ�qðg;tÞj pðg; tÞpðn; tÞ � jðpðn; tÞ þ pðg; tÞÞÞdgdn; ð2:3Þ
which yields system (2.2) by the (standard) Poisson structure
qt ¼
dH
dp

; pt ¼ �
dH
dq

;

where d=dq, d=dp denote functional derivatives with respect to the functions qðn; tÞ and pðn; tÞ, respectively, at
fixed time t. The choice of initial condition for the position variable, dictated by the characteristics condition,
implies qnðn; 0Þ ¼ 1, so that the constraint
qnðn; tÞ ¼
pðn; 0Þ
pðn; tÞ ð2:4Þ
is maintained at all times of existence of the solution ðqðn; tÞ; pðn; tÞÞ. Thus, the momentum variable pðn; tÞ
could be eliminated from the system to obtain an evolution equation containing only the dependent variable
qðn; tÞ and its first derivative with respect to the initial label n. Vanishing of this derivative generically corre-
sponds to crossing of characteristics curves, with loss of uniqueness of solutions nðx; �Þ to the equation
x ¼ qðn; �Þ. Constraint (2.4) then shows that if the initial condition pðn; 0Þ does not have zeros, then qnð�; tÞ
is bounded away from zero, thereby preventing characteristics from crossing, for as long as j pð�; tÞ j<1
[4]. The relation of system (2.2) with the original form (1.1) of the shallow-water wave equation results from
the definition of the velocity uðx; tÞ in terms of characteristics qðn; tÞ and the conjugate momentum pðn; tÞ,
uðx; tÞ ¼ �jþ 1

2

Z 1

�1
e�jx�qðg;tÞjpðg; tÞdg: ð2:5Þ
System (2.2) can be rewritten in a slightly different form [6,7], and the numerical algorithm proposed in [4]
approximates the integrals in this system by their Riemann sums, thereby yielding Hamiltonian systems for
‘‘particles” with coordinates
qiðtÞ � qðni; tÞ

and momenta
piðtÞ � pðni; tÞ;

where ni ¼ Nþ ih for some real N, step-size h > 0 and i ¼ 1; . . . ;N .

By replacing the Jacobian qg in the system of integrals with the constraint (2.4), the discretized version of
the system results in the finite dimensional system of ODEs of N particles,
_qi ¼
h
2

XN

j¼1

e�jqi�qjjpj �
h
2

j
XN

j¼1

e�jqi�qjj p0
j=pj;

_pi ¼
h
2

pi

XN

i6¼j¼1

sgnðqi � qjÞe�jqi�qjj pj �
h
2

jpi

XN

i6¼j¼1

sgnðqi � qjÞe�jqi�qjjp0
j=pj;

ð2:6Þ
where pðnj; 0Þ � p0
j . System (2.6) constitutes our particle method for solving the shallow-water wave equation

(1.1); it can be shown to provide a convergent numerical algorithm to solutions of (1.1)under appropriate
assumptions on the initial data [6,7,12].



R. Camassa, L. Lee / Journal of Computational Physics 227 (2008) 7206–7221 7209
3. The particle method in periodic domains

The particle method is extended to periodic domains in [8] by observing that periodic solutions uðx; tÞ can be
achieved by considering a periodic extension of the exponential kernel in (2.5) by superposition of period
shifted exponentials (see also [1,2])
/Lðx; qÞ ¼
X1

k¼�1
e�jx�ðqþkLÞj; ð3:1Þ
where L is the period. We will refer to Eq. (3.1) as the periodic kernel.
Eq. (3.1) implies that one can always impose 0 6j x� q j6 L. We can express (3.1) in a more compact form

by splitting the doubly infinite sum into its negative and positive index n range and looking at the two possible
cases (1) 0 6 x� q 6 L and (2) �L 6 x� q 6 0. For case (1), we have
/Lðx; qÞ ¼
X0

k¼�1
e�ðx�qÞþkL þ

X1
k¼1

eðx�qÞ�kL

¼ e�ðx�qÞ

1� e�L
þ ex�qe�L

1� e�L

¼ coshðx� q� L=2Þ
sinhðL=2Þ :

ð3:2Þ
Similarly, for case (2), the periodic kernel is
/Lðx; qÞ ¼
coshðx� qþ L=2Þ

sinhðL=2Þ : ð3:3Þ
Combining (3.2) and (3.3), we have
/Lðx; qÞ ¼
coshðjðx� qÞmodLj � L=2Þ

sinhðL=2Þ ; ð3:4Þ
where ðx� qÞmodL is modulo of x� q and L, e.g., ð�8ÞmodL ¼ 2, if L ¼ 5.
If we replace the kernel in the first equation of (2.2) by the periodic kernel (3.4) and integrate it over one

period, we obtain an evolution equation for q
qtðn; tÞ ¼
1

2

Z L=2

�L=2

/Lðqðn; tÞ; qðg; tÞÞpðg; tÞdg� j: ð3:5Þ
Taking the time derivative for the auxiliary function pðn; tÞ, as defined in [4] (Eq. (2.12) in that reference), and
using (3.5), yields the evolution equation for p
ptðn; tÞ ¼ �
1

2
pðn; tÞ

Z L=2

�L=2

wLðqðn; tÞ; qðg; tÞÞpðg; tÞdg; ð3:6Þ
where
wLðx; qÞ ¼
sinhðjðx� qÞmodLj � L=2Þ

sinhðL=2Þ : ð3:7Þ
Evaluating the integrals in (3.5) and (3.6) by the trapezoidal rule results in the finite dimensional system of
ODEs of N particles in a periodic domain
_qi ¼
h
2

XN

j¼1

/Lðqi; qjÞpj � j

_pi ¼ �
h
2

pi

XN

i6¼j¼1

wLðqi; qjÞpj:

ð3:8Þ
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It is worth pointing out that since it is not necessary to resolve the numerical issue of a truncation of an infinite
domain, a modified expression similar to (2.6) is not needed for the periodic case. The velocity uN ðx; tÞ in terms
of characteristics qiðtÞ and the conjugate momentum piðtÞ is given by
uN ðx; tÞ ¼
h
2

XN

j¼1

/Lðx; qjðtÞÞpjðtÞ � j: ð3:9Þ
Eqs. (3.8) and (3.9) constitute the periodic particle algorithm. A similar algorithm but based on a different
perspective has been proposed in [12].
4. Fast summation algorithm

The major computational cost for the particle method is evaluating the Riemann sum in the finite dimen-
sional system. The total operation count is in the order of OðN 2Þ for N particles, if no particular speed up of
the algorithm is devised. A recursion formula based on the absence of particle collision is introduced in [7] to
reduce the cost from OðN 2Þ to OðNÞ. In this section, we modify the recursion algorithm in [7] to develop a fast
summation algorithm for summing the periodic kernels in the finite dimensional system. Such fast summation
algorithms make use of the no-collision principle to strip the absolute value in the argument of the exponential
function, which in turn makes a recursion relation for evaluating the sums possible. It is worth pointing out
that while the periodic kernel has the compact expression (3.4), it is not possible to take advantage of this for-
mula to develop the fast summation algorithm in periodic domains. The reason is that the hyperbolic func-
tions used in the compact formula cause overflow in computing the recursion functions, if the period L is
too large. Formula (3.1) is preferred for the following derivation.

Since j in the _q equation of system (3.8) is just some arbitrary constant which could always be absorbed by
a redefinition of q, without loss of generality we assume j ¼ 0 in our derivation. With an eye at developing the
recursion relation, we split the summation of index k in (3.1) into three parts, k ¼ 0, sum of k < 0, and sum of
k > 0. i.e., the _q equation of (3.8) can be written as
_qi ¼
h
2

XN

j¼1

X1
k¼�1

e�jqi�ðqjþkLÞjpj;

¼ h
2

XN

j¼1

X�1

k¼�1
e�jqi�ðqjþkLÞjpj þ

h
2

XN

j¼1

e�jqi�qjjpj þ
h
2

XN

j¼1

X1
k¼1

e�jqi�ðqjþkLÞjpj;

ð4:1Þ
where 0 6j qi � qj j6 L. The second summation term (the k ¼ 0 case) in the above equation can be dealt with
in exactly the same way as in [7], while recursion formulas for the other two double summation terms are han-
dled as follows:

Case 1. k < 0:
XN

j¼1

X�1

k¼�1
e�jqi�ðqjþkLÞjpj ¼

XN

j¼1

X�1

k¼�1
e�ðqi�qjÞþkLpj ¼

XN

j¼1

e�ðqi�qjÞpj

X1
m¼1

e�mL ¼ e�L

1� e�L

XN

j¼1

e�ðqi�qjÞpj: ð4:2Þ
This leads to a recursion relation for (4.2) by letting
g�i �
e�L

1� e�L

� �XN

j¼1

e�ðqi�qjÞpj; so that g�iþ1 ¼ e�ðqiþ1�qiÞg�i :
Similarly,
Case 2. k > 0:
XN

j¼1

X1
k¼1

e�jqi�ðqjþkLÞjpj ¼
e�L

1� e�L

XN

j¼1

eðqi�qjÞpj ð4:3Þ
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and
gþi �
e�L

1� e�L

� �XN

j¼1

eðqi�qjÞpj; so that gþiþ1 ¼ eðqiþ1�qiÞgþi :
Using the same notation and recursion relation as in [7] (Eqs. (4.2) and (4.4) therein), i.e.,
f l
i ¼

Xi�1

j¼1

e�ðqi�qjÞpj and f r
i ¼

XN

j¼iþ1

e�ðqj�qiÞpj; ð4:4Þ
where
f l
iþ1 ¼ e�ðqiþ1�qiÞðf l

i þ piÞ and f r
iþ1 ¼ e�ðqi�qiþ1Þf r

i � piþ1; ð4:5Þ

we have
_qi ¼
h
2
ðg�i þ f l

i þ pi þ f r
i þ gþi Þ;

_pi ¼
h
2
ðg�i þ f l

i � f r
i � gþi Þpi:

ð4:6Þ
Note that we have a negative gþi in the _pi equation, since sgnðqi � ðqj þ kLÞÞ < 0 for k > 0.

5. Numerical examples

The shallow-water equation (1.1) admits periodic travelling wave solutions uðx; tÞ ¼ Uðx� ctÞ expressed
implicitly by the elliptic function Pðu; a2; kÞ [3]. A specific example can be provided by taking the mean mass
of the wave to be such that the minima of u are located at u ¼ 0, and the wave elevation is positive. In this case,
one finds the solution of the travelling wave equation
U 0 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�U 3 þ ðc� 2jÞU 2 þ CðAÞU

c� U

s
; ð5:1Þ
where the integration constant CðAÞ is a function of the wave amplitude A. Integration of Eq. (5.1) implies that
the traveling wave solution U can be found by the following implicit equation:
x ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1ða2 � a3Þ

p ða1 � a2ÞPðu; a2; kÞ: ð5:2Þ
Here u is a function of the dependent variable U, while the constants ai, i ¼ 1; 2; 3 (ordered in magnitude as
a3 < 0 < a2 < a1), and the parameters k and a are defined in terms of the wave velocity c, and the amplitude A,
respectively. These relations are:
u ¼ arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1

a2

a2 � U
a1 � U

r� �
;

A � a3 ¼
1

2
ðc� 2j�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc� 2jÞ2 þ 4C

q
Þ;
a2 ¼
1

2
ðc� 2jþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc� 2jÞ2 þ 4C

q
Þ;
a1 ¼ c
and
k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

a1

a1 � a3

a2 � a3

r
; a ¼

ffiffiffiffiffi
a2

a1

r
:
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Fig. 1. Comparison of the fast summation algorithm and the regular double summation method.
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Thus, the wavelength L of this periodic solution is linked to the parameter j, the wave speed c, and the wave
amplitude A by the relation
L ¼ 4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1ða2 � a3Þ

p ða1 � a2ÞPð/; a2; kÞ:
While solution (5.2) may not have a direct physical interpretation, it can be used to test numerical schemes in
the dispersive case, as illustrated next.

For the choice of parameters c ¼ 2, j ¼ 1=2, and the integration constant C ¼ 1, the wavelength (period) is
L � 6:3019. The initial data (waveform) of the traveling wave solution, with data points N ¼ 512, is the dot-
dash line shown in Fig. 1. Fig. 1 also shows the snapshot of the traveling wave around time t ¼ 2:520744. The
solid line is the solution computed by the regular double summation method, while the dash line is the one
computed by the fast summation algorithm. Not only both algorithms preserve the traveling waveform over
this evolution time, but they are in fact visually indistinguishable. The time step used in this calculation is
Dt ¼ 0:0158. We compute this numerical example on an Apple Power G5 machine with a dual 2.7 GHz pro-
cessor. The elapsed CPU time for the fast summation algorithm is less than 30 s, while the regular double sum-
mation method uses about 30 min CPU time to compute the same result. Further results on convergence
under grid refinement for the particle method in periodic domains are reported in [8].

6. Interaction of solitons and the recurrence of initial states

The KdV equation in the form
ut þ uux þ d2uxxx ¼ 0 ð6:1Þ

in periodic domains for small d2, was brought to fame by the seminal paper of Zabusky and Kruskal [14] of
1965, in the course of investigating the intriguing recurrence phenomena exhibited by the FPU (from Fermi,
Pasta and Ulam) lattice models of weakly nonlinear strings [11]. Zabusky and Kruskal used asymptotics to
extract the KdV equation from the discrete lattice systems, and considered periodic smooth initial data anal-
ogous to those of FPU. After a near shock breaking time, they observed the formation of solitary-wave pulses
for which they coined the name ‘‘solitons”, which moved uniformly at a rate linearly proportional to their
amplitudes. The striking behavior reported for such solitons, since then understood to be the tell-tale sign
and consequence of complete integrability in wave evolution equations, was that they passed through one an-
other reappearing virtually unaffected in size or shape after their interaction. Remarkably, the recurrence phe-
nomenon observed in FPU lattice was also reproduced for KdV, its asymptotic continuum model: the initial
state would almost reappear after some time despite the soliton creation and interaction. The authors
described the recurrence phenomenon as follows: ‘‘In conclusion, we should emphasize that at T R all the solitons
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arrive almost in the same phase and almost reconstruct the initial state through the nonlinear interaction.” As
shown in the context of its derivation as an asymptotic long wave model [5,13], the nonlinear terms on the
right-hand-side of the shallow-water wave equation (1.1) are formally of higher order with respect to the
KdV expansions. If we scale Eq. (1.1) to a dynamic regime in which wave dispersion balances nonlinearity,
the dynamics of solutions should be comparable to those of the KdV equation (6.1). Thus, under such a scale
and in periodic domains, the shallow-water wave equation should in principle support solutions that behave
similarly to those of the KdV equation and exhibit phenomena similar to those described in Zabusky and
Kruskal’s paper [14], i.e. soliton formation with interactions, and the recurrence of smooth initial states.

Consider the initial value problem (IVP)
ut þ uux þ d2uxxx ¼ 0;

uðx; 0Þ ¼ cos px;
uð0Þ ¼ uð2Þ:

ð6:2Þ
Let x0 ¼ x� ct, t0 ¼ t, and u0 ¼ au. The above IVP can be rewritten as
u0t0 � cu0x0 þ au0u0x0 þ d2u0x0x0x0 ¼ 0;

u0ðx0; 0Þ ¼ 1

a
cos px0;

u0ð0Þ ¼ u0ð2Þ:

ð6:3Þ
For simplicity, we drop 0 hereafter. Assuming that a2 � d� a� 1, at the leading order, Eq. (6.3) become
ut � cux ¼ Oða; d2Þ;

uðx; 0Þ ¼ 1

a
cosðpxÞ;

uð0Þ ¼ uð2Þ;

ð6:4Þ
which implies utxx ¼ cuxxx þOða; d2Þ. If we ‘‘blend” asymptotically equivalent terms by the relation
uxxx ¼ luxxx þ ð1� lÞuxxx; ð6:5Þ

we can write
uxxx ¼ luxxx þ
1� l

c

� �
uxxt þOða; d2Þ: ð6:6Þ
Substituting Eq. (6.6) into Eq. (6.3), we obtain
ut � cux þ auux þ ld2uxxx þ
1� l

c

� �
d2uxxt ¼ Oðad2; d4Þ;

uðx; 0Þ ¼ 1

a
cosðpxÞ;

uð0Þ ¼ uð2Þ:

ð6:7Þ
Choosing c ¼ �1 and l ¼ 0, Eq. (6.7) become the initial value problem for the BBM system
ut þ ux þ auux � d2uxxt ¼ Oðad2; d4Þ;

uðx; 0Þ ¼ 1

a
cosðpxÞ;

uð0Þ ¼ uð2Þ:

ð6:8Þ
If we let x0 ¼ cx and t0 ¼ t, at the leading order we can write Eq. (6.8) as
ut þ cux þ acuux � d2c2uxxt ¼ Oðad2; d4Þ;

uðx; 0Þ ¼ 1

a
cosðpx=cÞ;

uð0Þ ¼ uð2cÞ:

ð6:9Þ



7214 R. Camassa, L. Lee / Journal of Computational Physics 227 (2008) 7206–7221
Comparison of Eq. (1.1) with Eq. (6.9) yields the choice of parameters d2c2 ¼ 1, ac ¼ 3, and c ¼ 2j. This leads
to c ¼ 1=d, a ¼ 3d, and j ¼ 1=ð2dÞ. Substituting these parameters into Eq. (6.9), we obtain
Fig. 2.
Fig. 1
the sh
j ¼ 1=
ut þ 2jux þ 3uux � uxxt ¼ Oð3d3Þ;

uðx; 0Þ ¼ 1

3d
cosðpdxÞ;

uð0Þ ¼ uð2=dÞ:

ð6:10Þ
Relations (6.10) represent the shallow-water wave equation (1.1) in scaled wave dispersion regimes. Therefore,
under this set of scales equation (1.1) is compatible with the KdV equation (6.2), and we should expect to ob-
serve similar phenomena between the solutions of the two equations. We remark that based on the scaling
analysis, when the parameter d is small, the required periodic domain for the recurrence study for the shal-
low-water wave equation is large. Hence a large number of particles (or, equivalently, grid points for Eulerian
based schemes) may be necessary for obtaining fully resolved computations. An OðNÞ method, such as the
particle method developed in this paper, becomes important for exploring the long-time behavior of the recur-
rence study for this equation. We also remark that the particle method, in contrast with its more general finite
difference counterparts at the same order, shows evidence of improved accuracy for the process of generation
of pulses from smooth initial conditions [6–8], which may prove advantageous for simulations where the cre-
ation process plays a relevant role. Fig. 2(a) is a recreation of Fig. 1 in the paper of Zabusky and Kruskal [14]
for the KdV equation (6.2), produced by the unconditionally stable spectral method developed in [9]. The re-
sult shows the temporal development of solitons emanating from smooth initial data uðx; 0Þ ¼ cos px. The
small parameter d in this calculation is 0.022. At time t ¼ tB ¼ 1=p, u tends to develop a discontinuity at
x ¼ 1=2, and at t ¼ 3:6tB, all of eight solitons appear at the same time in the window of the periodic domain.
Fig. 2(b) is the result from the shallow-water wave equation, whose initial condition, period, and the param-
eter j are scaled based on our previous analysis so that the equation is compatible with its KdV counterpart.
The figures show that the solutions of the two equations share similar qualitative behaviors under the scaling.
However, when observing the two figures closely, we see that while the number of solitons (i.e., number of
peaks) is the same, and the feature of linearly decaying waveforms at intermediate times is very similar, the
solitons’ amplitudes and phases are different. Notice that in the scaling analysis the time variable in the
two equations is the same, yet same-feature waveforms develop at different times between the two equations.
For instance, the KdV equation has the ‘‘breakdown” time tB ¼ 1=p � 0:32, whereas for the shallow-water
wave equation this time is t�B � 0:43. Similarly, the time when all solitons can be discerned in the observation
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domain is t � 1:46 for the KdV equation, whereas this time is t � 1:64 for the shallow-water wave equation.
Overall there is a small delay time shift Dt of about 0:1 	 0:2 for the same phenomena to occur between the
dynamics of the KdV and of the shallow-water wave equations in this example, with the shallow-water wave
equation dynamics trailing behind. Our numerical experiments also show that such a delay depends on the
initial condition and the magnitude of d. We remark that in order to have a fair comparison between the
two equations, the units in the plot of the shallow-water wave equation are scaled to be the same as for
the KdV equation.

Next, we show an example of the recurrence of initial state for both the KdV and shallow-water wave equa-
tions in periodic domains. The initial condition is uðx; 0Þ ¼ 0:15 cosðpxÞ with the period L ¼ 2 and d ¼ 0:022.
Fig. 3(a) shows the temporal development of the waveforms, and in particular a near recurrence of the initial
state for the KdV equation. Fig. 3(b) shows the same features for the shallow-water wave equation evolution.
We note that for this particular example and, in fact, for most of our experiments, the recurrence of initial
states in the shallow-water wave equation dynamics is more closely achieved than for its KdV equation’s coun-
terpart. Fig. 4(a) and (b) shows recurrences of the initial states (in different phases from the given initial con-
ditions) for the KdV and shallow-water wave equation respectively. The figures clearly show that the
recurrence for the shallow-water wave equation is closer to the initial data than in the case of the KdV equa-
tion: while this can be quantified in sup-norm, it can also be measured by more qualitative indicators such as
the number of inflection points in the profile of the solution at recurrence. Consistently with the findings of
Zabusky and Kruskal, our numerical experiments show that before a recurrence takes place, the solitons will
go through three stages: (i) solitons appear at the same time in the domain, (ii) interaction of solitons, and (iii)
all solitons appear again in the domain but ordered as the mirror image to stage (i) solitons. We illustrate this
reflectional symmetry in the next example, and show a case of ‘‘near super-recurrence”, for which solitons
arrive almost in the same phase and reconstruction of the initial state is nearly perfect. This case corresponds
to the initial data uðx; 0Þ ¼ 0:12=ð3dÞ cosðdpxÞ with the period L ¼ 2=d and the parameter j ¼ 1=ð2dÞ, where
d ¼ 0:018. Fig. 5(a) shows that the solitons appear at the same time at t ¼ 8:38, and Fig. 5(b) is the mirror
image of (a), where t ¼ 26:08.

In searching for the recurrence phenomenon for Eq. (1.1) exemplified above, the choice of parameters given
by the matching with the KdV asymptotic scaling in [14] plays an important role. Recurrence of initial data at
relatively short times appears to be dependent on the fine tuning of these parameters and can easily be pushed
to several orders of magnitude longer times, especially as the number of solitary-waves emerging from the ini-
tial data increases. Fig. 6 illustrates this for the choice of smaller j’s (and larger d’s). The first time of quasi-
recurrence shown in this figure appears at around time t ¼ 1900. The somewhat delicate balance on
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parameters for the recurrence time deserves further investigation, which however is outside of the scope of this
work and will be presented in a separate study.

After the mirror image is formed, Fig. 7 shows a near super-recurrence at t ¼ 34:48, with the waveform
reconstructing the initial data.

While the particle method is an efficient and accurate algorithm for solving the shallow-water wave equa-
tion, the method is also advantageous for investigating the recurrence mechanism from the different perspec-
tive offered by the particle mechanical system. For the ith ‘‘particle” in the particle system, qi represents the
particle coordinate while pi is its conjugate momentum. Fig. 8 plots q� n vs n, where n is the initial coordi-
nates of the particles. The slope of each plot is qn � 1. When qn � 1 > 1 particles compress to move and shar-
pen the waveform, while for qn � 1 < 1 the situation reverses. Fig. 8(a) suggests that particles compress in
those regions where further interactions of the solitons are expected, whereas Fig. 8(b) shows that particles
are arranged to generate the reconstruction of the initial cosine wave.

Through particle interaction we see that when a recurrence occurs, both q and p shuffle to return to their
initial states. Fig. 9(a) is a plot for the momentum p vs the coordinate q; it shows that at t ¼ 34:48, each
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particle possesses almost the same magnitude of momentum as the initial state. Fig. 9(b) is the plot of q� n vs
n, which shows how particles return to equally distributed coordinates during the reconstruction. All the plots
for the shallow-water wave equation are normalized by the parameter d, except in Fig. 6.
7. Particle and integral algorithms in finite domains

The particle method developed in [4,6,7] is extended to a quarter-plane problem with zero boundary con-
ditions at the origin and at infinity of the positive real line. This problem maintains complete integrability as
shown by the time invariance of the spectrum of an associated eigenvalue problem. In analogy to the quarter-
plane problem, the homogeneous two-point boundary value problem for a finite interval can also be studied,
with similar complete integrability properties (work in progress). In fact, the particle system can in turn be
considered as a member of the family of Toda lattice flows, as the structure of the associated iso-spectral prob-
lem (Lax-pair) [4] reveals, and it is of interest to consider this two point boundary value problem with an eye to
future theoretical developments. Thus, in this last section, we develop a particle and an integral method for the
shallow-water wave equation in finite domains with homogeneous boundary conditions.

Consider the following initial-boundary value problem (IBVP) for the shallow-water wave equation (1.1),
Fig. 9.
coordi
ut þ 2jux � uxxt þ 3uux ¼ 2uxuxx þ uuxxx;

uð0; tÞ ¼ uðL; tÞ ¼ 0;

uð0; xÞ ¼ f ðxÞ; 0 6 x 6 L:

ð7:1Þ
For this IBVP, the Green’s function associated with the operator M ¼ 1� @2
x has the form
Gðx; yÞ ¼ 1

2
ðe�jx�yjÞ þ c1ðyÞex þ c2ðyÞe�x: ð7:2Þ
Applying the homogeneous boundary conditions, we obtain
Gðx; yÞ ¼ 1

2
ðe�jx�yj � ex�yÞ þ 1

2

sinhðy � LÞ
sinh L

ðe�x � exÞ: ð7:3Þ
The derivative of Gðx; yÞ with respect to x is
Uðx; yÞ ¼ � 1

2
ðsgnðx� yÞe�jx�yj þ ex�yÞ � 1

2

sinhðy � LÞ
sinh L

ðe�x þ exÞ: ð7:4Þ
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Similarly, the derivative of Gðx; yÞ with respect to y is
Gyðx; yÞ ¼
1

2
sgnðx� yÞe�jx�yj þ ex�y
� �

þ 1

2

coshðy � LÞ
sinh L

e�x � exð Þ: ð7:5Þ
In analogy with Eq. (2.2), this Green’s function and its derivative are the kernels of the integral equations of p

and q for the IBVP. We present the evolution equation for q in a modified, but completely equivalent form to
(2.2)
qtðn; tÞ ¼
Z L

0

Gðqðn; tÞ; qðg; tÞÞ pðg; tÞ � j
oq
og
ðg; tÞ

� �
dg: ð7:6Þ
Once again, taking a time derivative to the function pðn; tÞ and using Eq. (7.6), we obtain the evolution equa-
tion for p
ptðn; tÞ ¼ �pðn; tÞ
Z L

0

Uðqðn; tÞ; qðg; tÞÞ pðg; tÞ � j
oq
og
ðg; tÞ

� �
dg; ð7:7Þ
For the purpose of evaluating the integral, the Jacobian qg can be written as
oq
og
ðg; tÞ ¼ pðg; 0Þ

pðg; tÞ ; ð7:8Þ
where the equality was shown in [7]. If we apply the composite trapezoidal rule to the integral equations, we
obtain a finite dimensional ODE system of N particles.
_qi ¼
h
2

Gðqi; q1Þ p1 � j
p0;1

p1

� �
þ h

XN�1

j¼2

Gðqi; qjÞ pj � j
p0;j

pj

 !
þ h

2
Gðqi; qN Þ pN � j

p0;N

pN

� �
;

_pi ¼ �
h
2

piUðqi; q1Þ p1 � j
p0;1

p1

� �
� hpi

XN�1

j¼2

Uðqi; qjÞ pj � j
p0;j

pj

 !
� h

2
piUðqi; qN Þ pN � j

p0;N

pN

� �
;

ð7:9Þ
where pðg; 0Þ � p0.
The derivative of the Green’s function (7.5) can be substituted into the integro-differential equation derived

in [7,8] to obtain an integral algorithm for the IBVP,
ut ¼ �uux þ
Z L

0

Gyðx; yÞ u2 þ
u2

y

2
þ 2ju

 !
dy: ð7:10Þ
Similar to the particle method, the above integral can be approximated by the composite trapezoidal method.
We remark that the fast summation algorithms developed for evaluating the summation of the particle meth-
ods in infinite, semi-infinite, and periodic domains can be easily modified for evaluating the summation in the
trapezoidal method for the particle and the integral algorithms in this section.

Just as in the case of the Toda lattice [10], nonzero initial conditions and homogeneous boundary condi-
tions may lead to shock formation. For the shallow-water model, which is a unidirectional model, this can
be understood (for j > 0) by the fact that a zero boundary condition on the right-hand-side will eventually
stop waves traveling to the right, while the model does not allow for reflected waves to travel back into the
domain away from that boundary. Hence we may expect a breakdown to occur at the right boundary. For
the case j ¼ 0 this physical interpretation no longer applies, which mathematically is reflected by the lack
of a linearized form of the equation and hence of the dispersion relation. Thus, for this case there are no linear
waves propagating from left to right and the breakdown can be expected to take longer to occur. This
expected behavior of the continuum limit should be reflected by the particle approximating system, and we
illustrate this with two examples next.
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We consider the initial condition for the IBVP, sin x on the interval L ¼ ½0; p
. Fig. 10 shows the evolution
of u at time t � 0:8639, where (a) j ¼ 1 and (b) j ¼ 0. The dot-dash line is from the integral method and the
solid line is from the particle method. They are visually identical. The number of particles used in the particle
method is N ¼ 2000, the same as the number of grid points used in the integral method. While u continues to
evolve, particles accumulate near the boundary. If we blow up the waveforms near the right-hand-side bound-
ary, we can observe some loss of smoothness. Fig. 11 shows a blow-up of the solution near the boundary,
where (a) j ¼ 1 and (b) j ¼ 0. After the solution develops irregularity near the boundary, the momenta p

of the particles become very large and the particle method breaks down. The integral method can run to longer
time after the formation of irregularity, but eventually breaks down as well. In this calculation we note that it
takes a bit longer for the non-dispersive case j ¼ 0 to develop a singularity at the boundary.

8. Discussion

We have extended the fast summation algorithms for the particle method developed in our previous work
to the cases of periodic and finite interval homogeneous boundary conditions of the IBVP for the
shallow-water equation (1.1). With the speed-up afforded by the new algorithm, we have looked at the asymp-
totic closeness between evolutions from the same initial data in a periodic domain for the KdV and the shal-
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low-water wave equation, scaling variables so that both equations can be assumed to be formally equivalent
asymptotic models of the same physical system. Our investigation shows that both models indeed share similar
dynamical behavior for their solutions, and in particular the phenomenon of near recurrence of initial states,
first discovered in weakly nonlinear FPU lattices, is exhibited in both dynamics. However, the recurrence for
the shallow-water case is more closely reminiscent of that observed in FPU lattices, and includes times of
‘‘super-recurrence”, when the initial condition is almost perfectly recovered. Given the complete integrability
of the underlying particle method, this phenomenon might be amenable to a detailed interpretation with finite
dimensional dynamical system tools. With the aim at providing illustrations for future analytical investiga-
tions, we have also considered the two-point homogeneous boundary value problem, and in particular looked
at the shock formation at the right boundary which can be expected from both physical and mathematical
considerations due to the underlying hyperbolic structure of the shallow-water model.
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